Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.951
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700011

RESUMO

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , AVC Isquêmico/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Camundongos Knockout , Camundongos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Sistema Nervoso Simpático/fisiopatologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Cardiopatias/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência
2.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700010

RESUMO

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Assuntos
Antibióticos Antineoplásicos , Monóxido de Carbono , Cardiotoxicidade , Doxorrubicina , Proteínas de Membrana , Animais , Doxorrubicina/toxicidade , Monóxido de Carbono/metabolismo , Antibióticos Antineoplásicos/toxicidade , Feminino , Administração Oral , Camundongos , Heme Oxigenase-1/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Cardiopatias/metabolismo , Cardiopatias/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Carboxihemoglobina/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Humanos
3.
Physiol Rep ; 12(6): e15989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538007

RESUMO

Cardiac fibroblasts (CFs) are an attractive target for reducing pathological cardiac remodeling, and understanding the underlying mechanisms of these processes is the key to develop successful therapies for treating the pressure-overloaded heart. CF-specific knockout (KO) mouse lines with a Cre recombinase under the control of human TCF21 (hTCF21) promoter and/or an adeno-associated virus serotype 9 (AAV9)-hTCF21 system provide a powerful tool for understanding CF biology in vivo. Although a variety of rat disease models are vital for the research of cardiac fibrosis similar to mouse models, there are few rat models that employ cardiac cell-specific conditional gene modification, which has hindered the development and translational relevance of cardiac disease models. In addition, to date, there are no reports of gene manipulation specifically in rat CFs in vivo. Here, we report a simplified CF-specific rat transgenic model using an AAV9-hTCF21 system that achieved a CF-specific expression of transgene in adult rat hearts. Moreover, we successfully applied this approach to specifically manipulate mitochondrial morphology in quiescent CFs. In summary, this model will allow us to develop fast and simple rat CF-specific transgenic models for studying cardiovascular diseases in vivo.


Assuntos
Cardiomiopatias , Cardiopatias , Camundongos , Animais , Ratos , Humanos , Miócitos Cardíacos/metabolismo , Dependovirus/genética , Cardiopatias/patologia , Camundongos Knockout , Fibroblastos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Cardiovasc Toxicol ; 24(2): 184-198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324115

RESUMO

Advancements in cancer treatments have improved survival rates but have also led to increased cardiotoxicities, which can cause adverse cardiovascular events or worsen pre-existing conditions. Herein, cardiotoxicity is a severe adverse effect of 5-fluorouracil (5-FU) therapy in cancer patients, with reported incidence rates ranging from 1 to 20%. Some studies have also suggested subclinical effects and there are reports which have documented instances of cardiac arrest or sudden death during 5-FU treatment, highlighting the importance of timely management of cardiovascular symptoms. However, despite being treated with conventional medical approaches for this cardiotoxicity, a subset of patients has demonstrated suboptimal or insufficient responses. The frequent use of 5-FU in chemotherapy and its association with significant morbidity and mortality indicates the need for a greater understanding of 5-FU-associated cardiotoxicity. It is essential to reduce the adverse effects of anti-tumor medications while preserving their efficacy, which can be achieved through drugs that mitigate toxicity associated with these drugs. Underpinning cardiotoxicity associated with 5-FU therapy also has the potential to offer valuable guidance in pinpointing pharmacological approaches that can be employed to prevent or ameliorate these effects. The present study provides an overview of management strategies for cardiac events induced by fluoropyrimidine-based cancer treatments. The review encompasses the underlying molecular and cellular mechanisms of cardiotoxicity, associated risk factors, and diagnostic methods. Additionally, we provide information on several available treatments and drug choices for angina resulting from 5-FU exposure, including nicorandil, ranolazine, trimetazidine, ivabradine, and sacubitril-valsartan, which have demonstrated potential in mitigating or protecting against chemotherapy-induced adverse cardiac effects.


Assuntos
Cardiopatias , Neoplasias , Humanos , Cardiotoxicidade , Fluoruracila/efeitos adversos , Coração , Cardiopatias/patologia , Neoplasias/tratamento farmacológico
5.
Nat Commun ; 15(1): 606, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242884

RESUMO

Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.


Assuntos
DNA Metiltransferase 3A , Insuficiência Cardíaca , Humanos , Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A/genética , Fibroblastos , Fibrose/genética , Fibrose/patologia , Insuficiência Cardíaca/genética , Hematopoese/genética , Leucócitos Mononucleares , Mutação , Cardiopatias/genética , Cardiopatias/patologia
6.
Int Immunopharmacol ; 126: 111297, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039718

RESUMO

OBJECTIVE AND DESIGN: We aimed to investigate the molecular mechanism underlying formaldehyde (FA)-induced congenital heart disease (CHD) using in vitro and in vivo models. MATERIALS AND SUBJECTS: Neonatal rat heart tissues and H9C2 cells were used for in vitro studies, while FA-exposed new-born rats were used for in vivo studies. TREATMENT: H9C2 cells were exposed to FA concentrations of 0, 50, 100 and 150 µM/mL for 24 h. METHODS: Whole transcriptome gene sequencing identified differentially expressed miRNAs in neonatal rat heart tissues, while Real-time quantitative PCR (RT-qPCR) assessed miR-871-3p and Megf8 expression. RNA pull-down and dual-luciferase reporter assays determined miR-871-3p and Megf8 relationships. Inflammatory cytokine expression was assessed by western blotting. A FA-induced CHD model was used to validate miR-871-3p regulatory effects in vivo. RESULTS: We identified 89 differentially expressed miRNAs, with 28 up-regulated and 61 down-regulated (fold change ≥ 2.0, P < 0.05). Inflammation (interleukin) and signalling pathways were found to control FA-induced cardiac dysplasia. miR-871-3p was upregulated in FA-exposed heart tissues, modulated inflammation, and directly targeted Megf8. In vivo experiments showed miR-871-3p knockdown inhibited FA-induced inflammation and CHD. CONCLUSION: We demonstrated miR-871-3p's role in FA-induced CHD by targeting Megf8, providing potential targets for CHD intervention and improved diagnosis and treatment strategies.


Assuntos
Formaldeído , Cardiopatias , Proteínas de Membrana , MicroRNAs , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Ratos , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/toxicidade , Modelos Animais de Doenças , Formaldeído/metabolismo , Formaldeído/toxicidade , Expressão Gênica , Técnicas de Silenciamento de Genes , Coração/efeitos dos fármacos , Coração/fisiopatologia , Cardiopatias/congênito , Cardiopatias/metabolismo , Cardiopatias/patologia , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley
7.
Vet Clin Pathol ; 52(4): 681-690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788981

RESUMO

BACKGROUND: Eosinophilic effusions are commonly defined as effusions with ≥10% eosinophils. Eosinophilic cavitary effusions are infrequently observed in cats, with few case reports comprising the majority of the recent literature. OBJECTIVE: The objective was to review disease associations of cats with eosinophilic cavitary effusions and to assess if a lower threshold of eosinophils (5%-9%) may warrant consideration of similar etiologies associated with effusions with ≥10% eosinophils. METHODS: Cytology reports were retrospectively reviewed for all feline cavitary effusions submitted for fluid analysis from 2010 to 2020 at a veterinary teaching hospital. Cases were included if the manual leukocyte differential included ≥5% eosinophils and separated into 5%-9% and ≥10% eosinophils groups. Patient records were reviewed for associated medical conditions. RESULTS: A total of 669 effusions were submitted from 579 cats; 50 effusions from 48 cats had a leukocyte differential with ≥5% eosinophils. The eosinophil proportion was ≥10% in 22 cats; the most common underlying cause was neoplasia (10/22, 45%), followed by inflammatory disease (4/22, 18%), cardiac disease (3/22, 14%), suspect neoplasia (3/22, 14%), and undetermined (2/22, 9%). The underlying causes for the 26 cats with 5%-9% eosinophils were similar; neoplasia (8/26, 31%), cardiac disease (6/26, 23%), inflammatory disease (4/26, 15%), suspect neoplasia (3/26, 12%), undetermined (3/26, 12%), and idiopathic chylothorax (2/26, 8%). Cats with eosinophil proportions ≥10% in the fluid exhibited peripheral eosinophilia more frequently (35%) compared to those with 5%-9% eosinophils (5%). CONCLUSIONS: Consistent with the current literature, neoplasia, particularly lymphoma, remains a primary consideration for cats with eosinophilic effusions. Previously unreported associated diseases included cardiovascular and inflammatory disorders. Our findings suggest an eosinophil differential of 5%-9% is seen with similar etiologies considered for classically defined eosinophilic effusions.


Assuntos
Doenças do Gato , Cardiopatias , Neoplasias , Derrame Pleural , Gatos , Animais , Derrame Pleural/veterinária , Estudos Retrospectivos , Hospitais Veterinários , Hospitais de Ensino , Eosinófilos/patologia , Neoplasias/patologia , Neoplasias/veterinária , Cardiopatias/complicações , Cardiopatias/patologia , Cardiopatias/veterinária , Doenças do Gato/patologia
8.
Am J Physiol Heart Circ Physiol ; 325(4): H702-H719, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539452

RESUMO

Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.


Assuntos
Cardiopatias , Hipotireoidismo , Gravidez , Feminino , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiopatias/patologia , Hipertrofia/metabolismo , Hipertrofia/patologia , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Cardiomegalia/metabolismo
10.
Ageing Res Rev ; 88: 101963, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245633

RESUMO

Ageing is a physiological/pathological process accompanied by the progressive damage of cell function, triggering various ageing-related disorders. Phosphatidylinositol 3-kinase (PI3K), which serves as one of the central regulators of ageing, is closely associated with cellular characteristics or molecular features, such as genome instability, telomere erosion, epigenetic alterations, and mitochondrial dysfunction. In this review, the PI3K signalling pathway was firstly thoroughly explained. The link between ageing pathogenesis and the PI3K signalling pathway was then summarized. Finally, the key regulatory roles of PI3K in ageing-related illnesses were investigated and stressed. In summary, we revealed that drug development and clinical application targeting PI3K is one of the focal points for delaying ageing and treating ageing-related diseases in the future.


Assuntos
Envelhecimento , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Animais , Transdução de Sinais , Envelhecimento/patologia , Envelhecimento/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Neoplasias/metabolismo , Neoplasias/patologia
11.
Free Radic Biol Med ; 204: 38-53, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100355

RESUMO

Doxorubicin (DOX) is a potent chemotherapeutic drug for various cancers. Yet, the cardiotoxic side effects limit its application in clinical uses, in which ferroptosis serves as a crucial pathological mechanism in DOX-induced cardiotoxicity (DIC). A reduction of Na+/K + ATPase (NKA) activity is closely associated with DIC progression. However, whether abnormal NKA function was involved in DOX-induced cardiotoxicity and ferroptosis remains unknown. Here, we aim to decipher the cellular and molecular mechanisms of dysfunctional NKA in DOX-induced ferroptosis and investigate NKA as a potential therapeutic target for DIC. A decrease activity of NKA further aggravated DOX-triggered cardiac dysfunction and ferroptosis in NKAα1 haploinsufficiency mice. In contrast, antibodies against the DR-region of NKAα-subunit (DR-Ab) attenuated the cardiac dysfunction and ferroptosis induced by DOX. Mechanistically, NKAα1 interacted with SLC7A11 to form a novel protein complex, which was directly implicated in the disease progression of DIC. Furthermore, the therapeutic effect of DR-Ab on DIC was mediated by reducing ferroptosis by promoting the association of NKAα1/SLC7A11 complex and maintaining the stability of SLC7A11 on the cell surface. These results indicate that antibodies targeting the DR-region of NKA may serve as a novel therapeutic strategy to alleviate DOX-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Cardiopatias , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Adenosina Trifosfatases/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/farmacologia , Cardiopatias/patologia , Anticorpos/metabolismo , Apoptose , Estresse Oxidativo
12.
Acta Pharmacol Sin ; 44(8): 1521-1535, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36914852

RESUMO

Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.


Assuntos
Cardiomiopatias Diabéticas , Cardiopatias , Morte Celular Regulada , Humanos , Apoptose/fisiologia , Miocárdio/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiopatias/patologia
13.
J Mol Cell Cardiol ; 180: 84-93, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965699

RESUMO

Myocardial infarction causes the loss of cardiomyocytes and the formation of cardiac fibrosis due to the activation of cardiac fibroblasts, leading to cardiac dysfunction and heart failure. Unfortunately, current therapeutic interventions can only slow the disease progression. Furthermore, they cannot fully restore cardiac function, likely because the adult human heart lacks sufficient capacity to regenerate cardiomyocytes. Therefore, intensive efforts have focused on developing therapeutics to regenerate the damaged heart. Several strategies have been intensively investigated, including stimulation of cardiomyocyte proliferation, transplantation of stem cell-derived cardiomyocytes, and conversion of fibroblasts into cardiac cells. Resident cardiac fibroblasts are critical in the maintenance of the structure and contractility of the heart. Fibroblast plasticity makes this type of cells be reprogrammed into many cell types, including but not limited to induced pluripotent stem cells, induced cardiac progenitor cells, and induced cardiomyocytes. Fibroblasts have become a therapeutic target due to their critical roles in cardiac pathogenesis. This review summarizes the reprogramming of fibroblasts into induced pluripotent stem cell-derived cardiomyocytes, induced cardiac progenitor cells, and induced cardiomyocytes to repair a damaged heart, outlines recent findings in utilizing fibroblast-derived cells for heart regeneration, and discusses the limitations and challenges.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiopatias/patologia , Fibroblastos/metabolismo
14.
J Comp Pathol ; 202: 5-7, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36972627

RESUMO

A 2-year-old spayed female Labrador Retriever with clinical signs of heart failure presented to necropsy with a pericardial defect with most of the left ventricle non-reducibly herniated into the pleural space. The herniated cardiac tissue was constricted by a ring of pericardium that allowed subsequent infarction, evidenced by a marked depression on the epicardial surface. A congenital defect was considered more likely than a traumatic cause, since the margin of the pericardial defect was smooth and fibrous. Histologically, the herniated myocardium was acutely infarcted while the epicardium at the defect margin was markedly compressed, including the coronary vessels. This appears to be the first report of ventricular cardiac herniation with incarceration and infarction (strangulation) in a dog. Similar cardiac strangulations may rarely occur in humans with congenital pericardial defects or acquired pericardial defects secondary to blunt trauma or thoracic surgery.


Assuntos
Doenças do Cão , Cardiopatias , Humanos , Cães , Feminino , Animais , Ventrículos do Coração/patologia , Cardiopatias/patologia , Cardiopatias/veterinária , Pericárdio/patologia , Miocárdio/patologia , Infarto/veterinária , Infarto/patologia , Doenças do Cão/patologia
15.
Signal Transduct Target Ther ; 8(1): 114, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918543

RESUMO

Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.


Assuntos
Envelhecimento , Senescência Celular , Cardiopatias , Miócitos Cardíacos , Humanos , Envelhecimento/metabolismo , Envelhecimento/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Biologia Molecular , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Senescência Celular/fisiologia , Cardiopatias/metabolismo , Cardiopatias/patologia
16.
J Comp Pathol ; 201: 63-69, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36709730

RESUMO

The cardiac conduction system was examined histologically in 13 canine cases of atrioventricular (AV) valve endocardiosis with third-degree AV block. In all cases, gross examination revealed marked thickening and distortion of the base of the central fibrous body (CFB) and varying degrees of endocardial thickening of the upper portion of the ventricular septum (VS) as well as marked thickening of the mitral and tricuspid valve leaflets due to myxomatous degeneration. Microscopically, the thickened and distorted CFB had encased or trapped, either partly or totally, the underlying penetrating and branching portions of the AV bundle. The myxomatous and/or fibrofatty tissue, which had proliferated at the base of the extensive CFB, protruded into or encroached on the AV bundle, causing severe (51-75%) to very severe (76% or more) reduction of the conduction fibres. The upper portions of the left and right bundle branches were involved in the endocardial thickening due to degenerative and fibrotic changes at the uppermost VS; however, both bundle branches were much less severely affected than the AV bundle, the degree of reduction of the conduction fibres ranging from mild (25% or less) to moderate (26-50%). These observations suggest that the sites most vulnerable to lesions in the AV conduction system are the penetrating and branching portions of the AV bundle, which would represent the anatomical basis for third-degree AV block in canine cases of AV valve endocardiosis.


Assuntos
Bloqueio Atrioventricular , Doenças do Cão , Cardiopatias , Animais , Cães , Bloqueio Atrioventricular/patologia , Bloqueio Atrioventricular/veterinária , Fascículo Atrioventricular/patologia , Doenças do Cão/patologia , Endocárdio/patologia , Sistema de Condução Cardíaco/patologia , Cardiopatias/patologia , Cardiopatias/veterinária
17.
J Spinal Cord Med ; 46(4): 697-701, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35108171

RESUMO

BACKGROUND: Amyloidosis is a rare group of diseases in which fibrillar amyloid proteins are deposited in systemic organs to result in functional disorder. However, amyloidosis affecting the cervical spine is very rare. We herein describe a case of systemic amyloidosis including a combination of cervical myelopathy with amyloid deposition and cardiac dysfunction due to cardiac amyloidosis. CASE PRESENTATION: An 86-year-old man with cervical myelopathy accompanied with cardiac dysfunction due to cardiac amyloidosis underwent posterior cervical laminectomy from C3 to C4. We were able to identify the patient's cardiac amyloidosis and significant cardiac dysfunction before surgery and manage his perioperative treatment successfully. Preoperative cervical computed tomography (CT) showed multiple fine calcifications below the lamina, which were later confirmed by pathological analysis as amyloid deposition. CONCLUSIONS: This is a relatively rare report of systemic amyloidosis including a combination of cervical myelopathy with amyloid deposition and cardiac dysfunction from cardiac amyloidosis. CT findings of multiple fine calcifications suggest the possibility of amyloidosis and may warrant further examination of cardiac function.


Assuntos
Amiloidose , Cardiopatias , Doenças da Medula Espinal , Traumatismos da Medula Espinal , Masculino , Humanos , Idoso de 80 Anos ou mais , Traumatismos da Medula Espinal/patologia , Doenças da Medula Espinal/complicações , Doenças da Medula Espinal/diagnóstico por imagem , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Vértebras Cervicais/patologia , Amiloidose/complicações , Amiloidose/diagnóstico , Amiloidose/patologia , Cardiopatias/complicações , Cardiopatias/patologia
18.
Heart Fail Rev ; 28(1): 123-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567705

RESUMO

Endomyocardial biopsy (EMB) is an invasive procedure originally developed for the monitoring of heart transplant rejection. Over the year, this procedure has gained a fundamental complementary role in the diagnostic work-up of several cardiac disorders, including cardiomyopathies, myocarditis, drug-related cardiotoxicity, amyloidosis, other infiltrative and storage disorders, and cardiac tumours. Major advances in EMB equipment and techniques for histological analysis have significantly improved diagnostic accuracy of EMB. In recent years, advanced imaging modalities such as echocardiography with three-dimensional and myocardial strain analysis, cardiac magnetic resonance and bone scintigraphy have transformed the non-invasive approach to diagnosis and prognostic stratification of several cardiac diseases. Therefore, it emerges the need to re-define the current role of EMB for diagnostic work-up and management of cardiovascular diseases. The aim of this review is to summarize current knowledge on EMB in light of the most recent evidences and to discuss current indications, including challenging scenarios encountered in clinical practice.


Assuntos
Cardiomiopatias , Cardiopatias , Miocardite , Humanos , Coração , Miocárdio/patologia , Cardiomiopatias/diagnóstico , Miocardite/patologia , Cardiopatias/patologia , Biópsia/métodos
19.
Elife ; 112022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35971771

RESUMO

Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38ß, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity.


The human heart can increase its size to supply more blood to the body's organs. This process, called hypertrophy, can happen during exercise or be caused by medical conditions, such as high blood pressure or inherited genetic diseases. If hypertrophy is continually driven by illness, this can cause the heart to fail and no longer be able to properly pump blood around the body. For hypertrophy to happen, several molecular changes occur in the cells responsible for contracting the heart, including activation of the p38 pathway. Within this pathway is a p38 enzyme as well as a series of other proteins which are sequentially turned on in response to stress, such as inflammatory molecules or mechanical forces that alter the cell's shape. There are different types of p38 enzyme which have been linked to other diseases, making them a promising target for drug development. However, clinical trials blocking individual members of the p38 family have had disappointing results. An alternative approach is to target other proteins involved in the p38 pathway, such as MKK6, but it is not known what effect this might have. To investigate, Romero-Becerra et al. genetically modified mice to not have any MKK6 protein. As a result, these mice had a shorter lifespan, with hypertrophy developing at a young age that led to heart problems. Romero-Becerra et al. used different mice models to understand why this happened, showing that a lack of MKK6 reduces the activity of a specific member of the p38 family called p38α. However, this blockage boosted a different branch of the pathway which involved two other p38 proteins, p38γ and p38δ. This, in turn, triggered another key pathway called mTOR which also promotes hypertrophy of the heart. These results suggest that drugs blocking MKK6 and p38α could lead to side effects that cause further harm to the heart. A more promising approach for treating hypertrophic heart conditions could be to inhibit p38γ and/or p38δ. However, before this can be fully explored, further work is needed to generate compounds that specifically target these proteins.


Assuntos
Cardiopatias , MAP Quinase Quinase 6 , Proteína Quinase 13 Ativada por Mitógeno , Animais , Cardiomegalia , Cardiopatias/genética , Cardiopatias/patologia , Estudos Longitudinais , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/genética , Camundongos , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA